Abstract

Abstract The seismic slip that occurred during the 1999 Chi‐Chi earthquake in Taiwan showed contrastive behaviors in different regions along the Chelungpu Fault: A large and smooth slip occurred in the north, while a relatively small slip associated with high‐frequency seismic wave radiation occurred in the south. The core samples from shallow boreholes at northern (Fengyuan) and southern (Nantou) sites penetrating the seismic Chelungpu Fault were analyzed. The fault zones at the northern site are characterized by soft clayey material associated with clayey injection veins. This suggests that the fault zones were pressurized during ancient seismic slip events, and hence the elastohydrodynamic lubrication occurred effectively. In contrast, the fault rock from the southern site is old pseudotachylyte that has been shattered by repeated ancient seismic slip events. Statistical analysis of many pseudotachylyte fragments reveals that the degree of frictional melting tended to be low. In this case, the seismic slip is restrained by the mechanical barrier of a highly viscous melt layer. These contrastive fault rocks were produced by repeated ancient seismic slip events, but the two corresponding mechanisms of friction are likely to have also occurred during the 1999 Chi‐Chi earthquake, thus causing the contrastive slip behaviors in the north and south.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.