Abstract

The mineralogy of many of the major unconventional hydrocarbon shale reservoirs in the USA, which span practically the whole spectrum of Phanerozoic time, is reviewed from a survey of relevant published literature. This survey reveals that there is a remarkable uniformity in the mineralogy of these shales, both with regard to non-clay minerals but particularly to the clay minerals. It was found that the clay mineralogy of practically all of the shale reservoirs older than the Upper Cretaceous are dominated by illitic clays, both in discrete form and as illite-dominated, mixed-layer, illite-smectite (I/S). The layer stacking arrangement of the latter is of the long-range type described as R3, such that every smectite layer tends to be preceded and succeeded by three illite layers in a sequence like IIISIIIS. Such material is conventionally interpreted (a) as having formed from a smectite precursor, (b) as existing in MacEwan-type crystallites consisting of about 5 to 15 unit layers in thickness where there is three-dimensional regularity across the smectite interlayers, and (c) as having interlayers of a truly smectitic character. Using evidence from the fundamental particle concept of Nadeau et al. (1984b) this interpretation is rejected. Instead, it is proposed that R3-type I/S (a) forms de novo, crystallizing from pore waters of appropriate chemical composition in a particular pressure and temperature stability field, as it does in conventional sandstone reservoirs, (b) consists primarily of thin illite crystallites or crystals <50Å in thickness, and (c) that the “smectite” interlayers can be accounted for by the ability of such thin illite stacks, which have no three-dimensional register between the fundamental particles when sedimented onto glass slides, to adsorb ethylene glycol between the particles so leading to a false diagnosis of “smectite”. This interpretation could have major consequences on the physicochemical properties of the shale, a matter that is examined more closely in the second part of this review.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.