Abstract

Understanding and predicting sealing characteristics and containment efficiency as a function of burial depth across sedimentary basins is a prerequisite for safe and secure subsurface storage. Instead of estimators and empirical relationships, this study aimed to delineate data-driven variability domains for non-cemented fine-grained clastic caprocks. Constant rate-of-strain uniaxial compression experiments were performed to measure changes in properties of brine-saturated quartz–clay mixtures. The binary mixtures were prepared by mixing quartz with strongly swelling (smectite) and non-swelling (kaolinite) clays representing end-member clay mineral characteristics. The primary objective was to evaluate the evolution of mudstone properties in the first 2.5 km of burial depth before chemical compaction and cementation. By conducting systematic laboratory tests, variability domains, normal compaction trends, and the boundaries in which characteristics of fine-grained argillaceous caprocks may vary were identified, quantified, and mathematically described. The results showed distinct domains of properties, where kaolinite-rich samples showed higher compressibility, lower total porosity, higher vertical permeability, and higher Vp and Vs. Two discrepancies were discovered in the literature and resolved regarding the compaction of pure kaolinite and the ultimate lowest porosity for quartz–clay mixtures. The present experimental study can provide inputs for numerical simulation and geological modeling of candidate CO2 storage sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call