Abstract

Detailed clay mineralogic and chemical analyses of Tertiary subsurface sediments of the Agbada and Akata Formations, from two wells on the Calabar Flank of the Niger Delta, have been systematically studied with a view to understanding clay mineral burial diagenesis. Five principal clay minerals, smectite, illite, kaolinite, chlorite and various proportions of mixed-layer illite/smectite were identified. Seven major oxides (SiO 2, Al 2O 3, MgO, Fe 2O 3, CaO, Na 2O, K 2O) were analysed for with an atomic absorption spectrophotometer, with a view to ascertain any depth related variations. The geothermal gradient of the two wells (Uruan-1 and Uda-1) was also calculated. The results appear to suggest a transformation from smectite to a mixed-layer illite/smectite (I/S) phase. The transformation first goes to a random I/S phase, and then to ordered I/S and back to random I/S, even though postulated conditions for a complete transformation to illite did exist. It would therefore seem, from this case study, that neither temperature nor the availability of potassium is the principal factor controlling the transformation. Kaolinite and chlorite distribution does not exhibit any systematic trend that could be related to burial diagenesis. These results provoked an extensive literature review on the subject, and key ideas discerned are summarized here. The prognosis? In the author's opinion, we still have a lot to learn about the factors that control the mechanics and reaction extent of clay mineral burial diagenesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.