Abstract

Various polymer clay nanocomposites (PCNs) were prepared from ethylene vinyl acetate copolymer (EVA) with 9, 18 and 28% vinyl acetate (VA) content filled with different wt.% (2.5, 5 and 7.5) of a Montmorillonite-based organo-modified clay (Cloisite ® C15A and C30B). The PCNs were prepared using melt blending techniques. Morphological information regarding intercalation and exfoliation were determined by using wide-angle X-ray scattering (WAXS) and transmission electron microscopy (TEM). WAXS and TEM confirmed that increasing the VA content was necessary to achieve greater clay–polymer interaction as seen from the comparatively higher intercalation of clay platelets with 28% VA. The effect of addition of clay on the development and the modification of crystalline morphology in EVA matrix was also studied using WAXS and temperature-modulated differential scanning calorimetry (MDSC). Results are presented showing that the addition of clay platelets does not increase the matrix crystallinity but the morphology was significantly modified such that there was an increase in the ‘rigid’ amorphous phase. Mechanical properties were also evaluated against the respective morphological information for each specimen and there are indications that the level of clay–polymer interaction plays a significant role in such morphological modification, and in such a way that affects the final PCN mechanical properties which has wide and significant applications in the packaging industries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.