Abstract

CLAVATA Was a Genetic Novelty for the Morphological Innovation of 3D Growth in Land Plants

Highlights

  • Deceptive orchids of the genus Ophrys may rapidly evolve by adaptation to pollinators

  • We show that a conserved, CLAVATA peptide and receptor-like kinase pathway originated with land plants and orients stem cell division planes during the transition from 2D to 3D growth in a moss, Physcomitrella

  • We find that this newly identified role for CLAVATA in regulating cell division plane orientation is shared between Physcomitrella and Arabidopsis

Read more

Summary

Introduction

Deceptive orchids of the genus Ophrys may rapidly evolve by adaptation to pollinators. We report the complete plastid genome sequences of Ophrys iricolor and O. sphegodes, representing the two most species-rich lineages of the genus Ophrys. Both plastomes are circular DNA molecules (146754 bp for O. sphegodes and 150177 bp for O. iricolor) with the typical quadripartite structure of plastid genomes and within the average size of photosynthetic orchids. When compared with other members of the orchid family, the Ophrys plastome has a complete set of 11 functional ndh plastid genes, with the exception of O. sphegodes that has a truncated ndhF gene. In contrast to O. iricolor and other Orchidinae, O. sphegodes has a shift of the junction between the Inverted Repeat and Small Single Copy regions associated with the loss of the partial duplicated gene ycf and the truncation of the ndhF gene. CLV regulates cell division plane orientation during the 2D to 3D growth transition in a moss, and roles for CLV are shared between mosses and flowering plants, suggesting that CLV enabled 3D growth to arise in land plants

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call