Abstract
Nonequilibrium stationary states of thermodynamic systems dissipate a positive amount of energy per unit of time. If we consider transformations of such states that are realized by letting the driving depend on time, the amount of energy dissipated in an unbounded time window then becomes infinite. Following the general proposal by Oono and Paniconi and using results of the macroscopic fluctuation theory, we give a natural definition of a renormalized work performed along any given transformation. We then show that the renormalized work satisfies a Clausius inequality and prove that equality is achieved for very slow transformations, that is, in the quasistatic limit. We finally connect the renormalized work to the quasipotential of the macroscopic fluctuation theory, which gives the probability of fluctuations in the stationary nonequilibrium ensemble.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.