Abstract

Epithelia separate tissue spaces by regulating the passage of ions, solutes, and water through both the transcellular and paracellular pathways. Paracellular permeability is defined by intercellular tight junctions, which vary widely among tissues with respect to solute flux, electrical resistance, and ionic charge selectivity. To test the hypothesis that members of the claudin family of tight junction proteins create charge selectivity, we assessed the effect of reversing the charge of selected extracellular amino acids in two claudins using site-directed mutagenesis. Claudins were expressed in cultured Madin-Darby canine kidney cell monolayers under an inducible promoter, and clones were compared with and without induction for transmonolayer electrical resistance and dilution potentials. Expression and localization of claudins were determined by immunoblotting, immunofluorescence microscopy, and freeze-fracture electron microscopy. We observed that substituting a negative for a positive charge at position 65 in the first extracellular domain of claudin-4 increased paracellular Na+ permeability. Conversely, substituting positive for negative charges at three positions in the first extracellular domain of claudin-15, singly and in combination, reversed paracellular charge selectivity from a preference for Na+ to Cl-. These results support a model where claudins create charge-selective channels in the paracellular space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.