Abstract

BACKGROUNDClaudin-7, one of the important components of cellular tight junctions, is currently considered to be expressed abnormally in colorectal inflammation and colorectal cancer. However, there is currently no effective animal model to study its specific mechanism. Therefore, we constructed three lines of Claudin-7 knockout mice using the Cre/LoxP system.AIMTo determine the function of the tumor suppressor gene Claudin-7 by generating three lines of Claudin-7 gene knockout mice.METHODSWe crossed Claudin-7-floxed mice with CMV-Cre, vil1-Cre, and villin-CreERT2 transgenic mice, and the offspring were self-crossed to obtain conventional Claudin-7 knockout mice, conditional (intestinal specific) Claudin-7 knockout mice, and inducible conditional Claudin-7 knockout mice. Intraperitoneal injection of tamoxifen into the inducible conditional Claudin-7 knockout mice can induce the knockout of Claudin-7. PCR and agarose gel electrophoresis were used to identify mouse genotypes, and Western blot was used to confirm the knockout of Claudin-7. The mental state, body length, and survival time of these mice were observed. The dying mice were sacrificed, and hematoxylin-eosin (HE) staining and immunohistochemical staining were performed to observe changes in intestinal structure and proliferation markers.RESULTSWe generated Claudin-7-floxed mice and three lines of Claudin-7 gene knockout mice using the Cre/LoxP system successfully. Conventional and intestinal specific Claudin-7 knockout mice were stunted and died during the perinatal period, and intestinal HE staining in these mice revealed mucosal gland structure disappearance and connective tissue hyperplasia with extensive inflammatory cell infiltration. The inducible conditional Claudin-7 knockout mice had a normal phenotype at birth, but after the induction with tamoxifen, they exhibited a dying state. Intestinal HE staining showed significant inflammatory cell infiltration, and atypical hyperplasia and adenoma were also observed. Intestinal immunohistochemistry analysis showed abnormal expression and distribution of Ki67, and the normal intestinal proliferation balance was disrupted. The intestinal crypt size in inducible conditional Claudin-7 knockout mice was increased compared with control mice (small intestine: 54.1 ± 2.96 vs 38.4 ± 1.63; large intestine: 44.7 ± 1.93 vs 27.4 ± 0.60; P < 0.001).CONCLUSIONThe knockout of Claudin-7 in vivo causes extensive inflammation, atypical hyperplasia, and adenoma in intestinal tissue as well as animal death in mice. Claudin-7 may act as a tumor suppressor gene in the development of colorectal cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.