Abstract

BackgroundRecent studies have shown dysregulation in TJ structure of several cancers including breast. Claudin-5 is a protein member of the TJ structure expressed in both endothelial and epithelial cells. This study examined the level of expression and distribution of Claudin-5 in human breast cancer tissues and the effect of knockdown and forced expression of Claudin-5 in the MDA-MB-231 breast cancer cell line.MethodsImmunohistochemistry and quantitative-PCR were used to analyse patient tissue samples. The Claudin-5 gene was cloned and overexpressed or knocked down using ribozyme technology in human breast cancer cells. Changes in function were assessed using in vitro assays for invasion, growth, adhesion, wounding, motility, transepithelial resistance and electric cell-substrate impedance sensing. Changes in cell behaviour were achieved through the use of Hepatocyte Growth factor (HGF) which we have shown to affect TJ function and expression of TJ proteins. In addition, an in vivo model was used for tumour growth assays. Results data was analyzed using a Students two sample t-test and by Two-way Anova test when the data was found to be normalized and have equal variances. In all cases 95% confidence intervals were used.ResultsPatients whose tumours expressed high levels of Claudin-5 had shorter survival than those with low levels (p = 0.004). Investigating in vitro the effect of altering levels of expression of Claudin-5 in MDA-MB-231cells revealed that the insertion of Claudin-5 gene resulted in significantly more motile cells (p < 0.005). Low levels of Claudin-5 resulted in a decrease in adhesion to matrix (p < 0.001). Furthermore, a possible link between Claudin-5 and N-WASP, and Claudin-5 and ROCK was demonstrated when interactions between these proteins were seen in the cells. Moreover, followed by treatment of N-WASP inhibitor (Wiskostatin) and ROCK inhibitor (Y-27632) cell motility was assessed in response to the inhibitors. Results showed that the knockdown of Claudin-5 in MDA-MB-231 masked their response after treatment with N-WASP inhibitor; however treatment with ROCK inhibitor did not reveal any differences in motility in this cell line.ConclusionsThis study portrays a very new and interesting role for Claudin-5 in cell motility involving the N-WASP signalling cascade indicating a possible role for Claudin-5 in the metastasis of human breast cancer.

Highlights

  • Recent studies have shown dysregulation in Tight Junction (TJ) structure of several cancers including breast

  • Claudin-5 expression was correlated with long-term survival The expression of Claudin-5 was examined in breast cancer specimens using real-time quantitative Polymerase Chain Reaction

  • Correlation of Claudin-5 with prognosis, staging and clinical outcome To assess levels of expression of Claudin-5 with disease progression, Claudin-5 transcript levels in the breast cancer samples were analysed against The Nottingham Prognostic Index (NPI), tumour-node-metastasis (TNM) and histological grade

Read more

Summary

Introduction

Recent studies have shown dysregulation in TJ structure of several cancers including breast. The process of cancer metastasis consists of linked sequential steps, so called metastatic cascade, including detachment, invasion, intravasation, circulation, adhesion, extravasation, and growth in distant organs. Most cancers, including breast cancer, originate from epithelial tissues and are characterized by abnormal and uncontrolled growth as well as presenting disorders in cell communication. Motility occurs in response to chemokines or growth factor signals. In response to these stimuli, changes in the cytoskeleton, in the cell-cell adhesion structures and in the extracellular matrix (ECM) take place resulting in a motile cell capable of gaining access to the systematic circulation and metastasis [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call