Abstract

First published August 15, 2001; 10.1152/ajprenal.00021.2001.—The proximal nephron possesses a leaky epithelium with unique paracellular permeability properties that underlie its high rate of passive NaCl and water reabsorption, but the molecular basis is unknown. The claudins are a large family of transmembrane proteins that are part of the tight junction complex and likely form structural components of a paracellular pore. To localize claudin-2 in the mouse kidney, we performed in situ hybridization using an isoform-specific riboprobe and immunohistochemistry using a polyclonal antibody directed against a COOH-terminal peptide. Claudin-2 mRNA and protein were found throughout the proximal tubule and in the contiguous early segment of the thin descending limb of long-looped nephrons. The level of expression demonstrated an axial increase from proximal to distal segments. In confocal images, the subcellular localization of claudin-2 protein coincided with that of the tight junction protein ZO-1. Our findings suggest that claudin-2 is a component of the paracellular pathway of the most proximal segments of the nephron and that it may be responsible for their uniquely leaky permeability properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.