Abstract

Claudin-11 plays a critical role in multiple physiological processes, including myelination, auditory function, and spermatogenesis. Recently, stop-loss mutations in CLDN11 have been identified as a novel cause of hypomyelinating leukodystrophy (HLD22). Understanding the multifaceted roles of claudin-11 and the potential pathogenic mechanisms in HLD22 is crucial for devising targeted therapeutic strategies. This review outlines the biological roles of claudin-11 and the implications of claudin-11 loss in the context of the Cldn11 null mouse model. Additionally, HLD22 and proposed pathogenic mechanisms, such as endoplasmic reticulum stress, will be discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call