Abstract

In the mammalian ovary, oocytes are arrested at prophase of meiosis I until a hormonal stimulus triggers resumption of meiosis. During the subsequent meiotic maturation process, which includes completion of the first meiotic division and formation of the second metaphase spindle, oocytes acquire competence for fertilization. Recently, it was shown that clathrin, a cytosolic protein complex originally defined for its role in intracellular membrane traffic, is also involved in the stabilization of kinetochore fibers in mitotic spindles of dividing somatic cells. However, whether clathrin has a similar function in meiotic spindles in oocytes has not been investigated previously. Our results show that endogenous clathrin associates with the meiotic spindles in oocytes. To study the function of clathrin during meiotic maturation, we microinjected green fluorescent protein-tagged C-terminal and N-terminal dominant-negative clathrin protein constructs into isolated porcine oocytes prior to in vitro maturation. Both protein constructs associated with meiotic spindles similar to endogenous clathrin, but induced misalignment and clumping of chromosomes, occurrence of cytoplasmic chromatin and failure of polar body extrusion. These data demonstrate that clathrin plays a crucial role in meiotic spindle function in maturing oocytes, possibly through spindle stabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.