Abstract

The role of clathrin-mediated endocytosis in SV (synaptic vesicle) recycling has been studied by combining molecular biology, physiology and electron microscopy at the squid giant synapse. Procedures that prevent clathrin from assembling into membrane coats, such as impairment of binding of the AP180 and AP-2 adaptor proteins, completely prevent membrane budding during endocytosis. These procedures also reduce exocytosis, presumably an indirect effect of a reduction in the number of SVs following block of endocytosis. Disrupting the binding of auxilin to Hsc70 (heat-shock cognate 70) prevents clathrin-coated vesicles from uncoating and also disrupts SV recycling. Taken together, these results indicate that a clathrin-dependent pathway is the primary means of SV recycling at this synapse under physiological conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.