Abstract

Investigations of clathrate structures have gained a new impetus with the recent discovery of room-temperature superconductivity in metal hydrides. Here we report the finding, through density functional theory calculations, of a clathrate phase in the fullerite C60 system. Intermolecular bonds of the type 5/5 2+3 cycloaddition are induced between each C60 molecule and its twelve nearest neighbors in the face centered cubic lattice. Remarkably, this bonding creates on octahedral sites new C60 cages, identical to the original ones, and on tetrahedral sites distorted sodalite-like cages. The resulting carbon clathrate has a Pm3¯ simple cubic structure with half of the original face centered lattice constant. Eighty percent of its atoms are sp3-hybridized, driving a narrow-gap semiconducting behavior, a moderate bulk modulus of 268 GPa and an estimated hardness of 21.6 GPa. This new phase is likely to be prepared by subjecting C60 to high pressure and high temperature conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.