Abstract

The eIF4E protein is the key regulator of translation initiation. The interaction of eIF4E with eIF4G triggers the translation of mRNA, and several proteins interrupt this association to modulate translation. Human 4E-T is one of the eIF4E-binding partners that represses the translation of bound mRNAs, and it is involved in the transport of eIF4E to processing bodies (P-bodies). Although Clast4, the mouse homolog of human 4E-T, might play critical roles in the regulation of translation, its properties are not well known. In this report, we deciphered the properties of Clast4 by determining its phosphorylation state, binding to eIF4E, and effects of overexpression on cell proliferation. Clast4 was phosphorylated by protein kinase A (PKA) in vivo on several residues of its amino terminus. Nevertheless, the PKA phosphorylation of Clast4 appeared to have no effect on either its eIF4E-binding ability or localization. Clast4 interacted with eIF4E1 and CPEB. The conserved eIF4E-binding sequence in Clast4, YXXXXL?, was important for binding eIF4E1A but not eIF4E1B. Similar to that of another well-known eIF4E regulator, the eIF4E binding protein (4E-BP), the overexpression of Clast4 decreased cell proliferation. These results suggest that Clast4 acts as a global translation regulator in cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call