Abstract

Automatic emotion recognition from speech signals is one of the important research areas, which adds value to machine intelligence. Pitch, duration, energy and Mel-frequency cepstral coefficients (MFCC) are the widely used features in the field of speech emotion recognition. A single classifier or a combination of classifiers is used to recognize emotions from the input features. The present work investigates the performance of the features of Autoregressive (AR) parameters, which include gain and reflection coefficients, in addition to the traditional linear prediction coefficients (LPC), to recognize emotions from speech signals. The classification performance of the features of AR parameters is studied using discriminant, k-nearest neighbor (KNN), Gaussian mixture model (GMM), back propagation artificial neural network (ANN) and support vector machine (SVM) classifiers and we find that the features of reflection coefficients recognize emotions better than the LPC. To improve the emotion recognition accuracy, we propose a class-specific multiple classifiers scheme, which is designed by multiple parallel classifiers, each of which is optimized to a class. Each classifier for an emotional class is built by a feature identified from a pool of features and a classifier identified from a pool of classifiers that optimize the recognition of the particular emotion. The outputs of the classifiers are combined by a decision level fusion technique. The experimental results show that the proposed scheme improves the emotion recognition accuracy. Further improvement in recognition accuracy is obtained when the scheme is built by including MFCC features in the pool of features.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.