Abstract

The algorithms of computational geometry are designed for a machine model with exact real arithmetic. Substituting floating point arithmetic for the assumed real arithmetic may cause implementations to fail. Although this is well known, there is no comprehensive documentation of what can go wrong and why. In this extended abstract, we study a simple incremental algorithm for planar convex hulls and give examples which make the algorithm fail in all possible ways. We also show how to construct failure-examples semi-systematically and discuss the geometry of the floating point implementation of the orientation predicate. We hope that our work will be useful for teaching computational geometry. The full paper is available at www.mpi-sb.mpg.de/~mehlhorn/ftp/ClassRoomExamples.ps . It contains further examples, more theory, and color pictures. We strongly recommend to read the full paper instead of this extended abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.