Abstract

Structures of tree topology are frequently encountered in nature and in a range of scientific domains. In this paper, a multi-step framework is presented to classify tree topologies introducing the idea of elastic matching of their sequence encodings. Initially, representative sequences of the branching topologies are obtained using node labeling and tree traversal schemes. The similarity between tree topologies is then quantified by applying elastic matching techniques. The resulting sequence alignment reveals corresponding node groups providing a better understanding of matching tree topologies. The new similarity approach is explored using various classification algorithms and is applied to a medical dataset outperforming state-of-the-art techniques by at least 6.6% and 3.5% in terms of absolute specificity and accuracy correspondingly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.