Abstract
Nowadays, social media is one of the popular modes of interaction and information diffusion. It is commonly found that the main source of information diffusion is done by some entities and such entities are also called as influencers. An influencer is an entity or individual who has the ability to influence others because of his/her relationship or connection with his/her audience. In this article, we propose a methodology to classify influencers from multi-layer social networks. A multi-layer social network is the same as a single layer social network depict that it includes multiple properties of a node and modeled them into multiple layers. The proposed methodology is a fusion of machine learning techniques (SVM, neural networks and so on) with centrality measures. We demonstrate the proposed algorithm on some real-life networks to validate the effectiveness of the approach in multi-layer systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.