Abstract

Non-geometric terrain properties surrounding a planetary exploration rover can be exploited to improve autonomous mobility of the rover. This paper shows a method to classify non-geometric terrain properties using image sequences obtained from onboard cameras. Our method is based on a Dynamic Texture analysis, which is a technique to estimate scene motion in image sequences. Using Dynamic Textures, we can incorporate a motion cue to classify not only soil types but also the velocities of a rover relative to terrain surface representing slippage due to terrains. First, we briefly show a learning algorithm for Dynamic Textures. Then we propose a combined distance measure for classification. Combining distance measures is useful to handle different properties of terrain, that is, a static property such as soil types and a dynamic property such as the velocities. The effectiveness of the combined distance measure for improving classification performance is demonstrated through experimental runs of two rover testbeds on sand pits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.