Abstract
An accurate and noninvasive stress assessment from human physiology is a strenuous task. In this paper, a pattern recognition system to learn complex correlates between heart rate variability (HRV) features and salivary stress biomarkers is proposed. Using the Trier social stress test, heart rate and salivary measurements were obtained from volunteers under varying levels of stress induction. Measurements of salivary alpha-amylase and cortisol were used as objective measures of stress, and were correlated with the HRV features using fuzzy ARTMAP (FAM). In improving the predictive ability of the ARTMAPs, techniques, such as genetic algorithms for parameter optimization and voting ensembles, were employed. The ensemble of FAMs can be used for predicting stress responses of salivary alpha-amylase or cortisol using heart rate measurements as the input. Using alpha-amylase as the stress indicator, the ensemble was able to classify stress from heart rate features with 75% accuracy, and 80% accuracy when cortisol was used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE transactions on neural networks and learning systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.