Abstract

This work contributes to clarifying several relationships between certain higher categorical structures and the homotopy type of their classifying spaces. Bicategories (in particular monoidal categories) have well-understood simple geometric realizations, and we here deal with homotopy types represented by lax diagrams of bicategories, that is, lax functors to the tricategory of bicategories. In this paper, it is proven that, when a certain bicategorical Grothendieck construction is performed on a lax diagram of bicategories, then the classifying space of the resulting bicategory can be thought of as the homotopy colimit of the classifying spaces of the bicategories that arise from the initial input data given by the lax diagram. This result is applied to produce bicategories whose classifying space has a double loop space with the same homotopy type, up to group completion, as the underlying category of any given (non-necessarily strict) braided monoidal category. Specifically, it is proven that these double delooping spaces, for categories enriched with a braided monoidal structure, can be explicitly realized by means of certain genuine simplicial sets characteristically associated to any braided monoidal categories, which we refer to as their (Street's) geometric nerves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.