Abstract
Event-related potentials (ERPs) recorded at the scalp are indicators of brain activity associated with event-related information processing; hence they may be suitable for the assessment of changes in cognitive processing load. While the measurement of ERPs in a laboratory setting and classifying those ERPs is trivial, such a task presents major challenges in a real world setting where the EEG signals are recorded when subjects freely move their eyes and the sensory inputs are continuously, as opposed to discretely presented. Here we demonstrate that with the aid of second-order blind identification (SOBI), a blind source separation (BSS) algorithm: (1) we can extract ERPs from such challenging data sets; (2) we were able to obtain meaningful single-trial ERPs in addition to averaged ERPs; and (3) we were able to estimate the spatial origins of these ERPs. Finally, using back-propagation neural networks as classifiers, we show that these single-trial ERPs from specific brain regions can be used to determine moment-to-moment changes in cognitive processing load during a complex real world task.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.