Abstract
Restatements of audited financial statements are used for evaluating reporting quality, audit quality and for other evaluative purposes. Prior research shows that restatements that correct unintentional errors have different implications for statement preparers, users, auditors and regulators than restatements that correct intentional misstatements. However, manually classifying restatements into these categories can be tedious, time-consuming and inconsistently performed. Therefore, we constructed a Naive Bayes machine learning algorithm to classify restatements by management intent based on the language in restatement announcements. Empirical tests of the algorithmically classified restatements show that this classification is an effective, efficient alternative to manual classification and more reliable than other commonly used automated methods such as classifying based on restatement direction or magnitude. Our method does not require a dictionary of words associated with management intent, is easily replicated and scalable and may be used to classify restatements disclosed at the same time as financial results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.