Abstract

Stroke therapy is essential to reduce impairments and improve motor movements by engaging autogenous neuroplasticity. Traditionally, stroke rehabilitation occurs in inpatient and outpatient rehabilitation facilities. However, recent literature increasingly explores moving the recovery process into the home and integrating technology-based interventions. This study advances this goal by promoting in-home, autonomous recovery for patients who experienced a stroke through robotics-assisted rehabilitation and classifying stroke residual severity using machine learning methods. Our main objective is to use kinematics data collected during in-home, self-guided therapy sessions to develop supervised machine learning methods, to address a clinician's autonomous classification of stroke residual severity-labeled data toward improving in-home, robotics-assisted stroke rehabilitation. In total, 33 patients who experienced a stroke participated in in-home therapy sessions using Motus Nova robotics rehabilitation technology to capture upper and lower body motion. During each therapy session, the Motus Hand and Motus Foot devices collected movement data, assistance data, and activity-specific data. We then synthesized, processed, and summarized these data. Next, the therapy session data were paired with clinician-informed, discrete stroke residual severity labels: "no range of motion (ROM)," "low ROM," and "high ROM." Afterward, an 80%:20% split was performed to divide the dataset into a training set and a holdout test set. We used 4 machine learning algorithms to classify stroke residual severity: light gradient boosting (LGB), extra trees classifier, deep feed-forward neural network, and classical logistic regression. We selected models based on 10-fold cross-validation and measured their performance on a holdout test dataset using F1-score to identify which model maximizes stroke residual severity classification accuracy. We demonstrated that the LGB method provides the most reliable autonomous detection of stroke severity. The trained model is a consensus model that consists of 139 decision trees with up to 115 leaves each. This LGB model boasts a 96.70% F1-score compared to logistic regression (55.82%), extra trees classifier (94.81%), and deep feed-forward neural network (70.11%). We showed how objectively measured rehabilitation training paired with machine learning methods can be used to identify the residual stroke severity class, with efforts to enhance in-home self-guided, individualized stroke rehabilitation. The model we trained relies only on session summary statistics, meaning it can potentially be integrated into similar settings for real-time classification, such as outpatient rehabilitation facilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.