Abstract

Pollution levels in stormwater vary significantly during rain events, with pollutant flushes carrying a major fraction of an event pollutant load in a short period. Understanding these flushes is thus essential for stormwater management. However, current studies mainly focus on describing the first flush or are limited by predetermined flush categories. This study provides a new perspective on the topic by applying data-driven approaches to categorise Mass Volume (MV) curves for TSS into distinct classes of flush tailored to specific monitoring location. Functional Data Analysis (FDA) was used to investigate the dynamics of MV curves in two large data sets, consisting of 343 measured events and 915 modelled events, respectively. Potential links between classes of MV curves and combinations of rain characteristics were explored through a priori clustering. This yielded correct class assignments for 23-63% of the events using different combinations of MV curve clustering and rainfall characteristics. This suggests that while global rainfall characteristics influence flush, they are not sufficient as sole explanatory variables of different flush phenomena, and additional explanatory variables are needed to assign MV curves into classes with a predictive power that is suitable for e.g. design of stormwater control measures. Our results highlight the great potential of the FDA methodology as a new approach for classifying, describing, and understanding pollutant flush signals in stormwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.