Abstract

The determinant on 2 by 2 matrices of trace zero gives a quadratic form. Linear algebra shows that its orthogonal group is the matrix algebra automorphisms together with scalars of square 1. As this holds over all commutative rings, descent theory can be applied to it to get a quick classification of all nonsingular quadratic forms of rank 3. Further descent arguments show how this classification yields the Witt invariant and discriminant.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.