Abstract

ABSTRACT With the availability of large-scale surveys like Kepler and TESS, there is a pressing need for automated methods to classify light curves according to known classes of variable stars. We introduce a new algorithm for classifying light curves that compares 7000 time-series features to find those that most effectively classify a given set of light curves. We apply our method to Kepler light curves for stars with effective temperatures in the range 6500–10 000 K. We show that the sample can be meaningfully represented in an interpretable 5D feature space that separates seven major classes of light curves (δ Scuti stars, γ Doradus stars, RR Lyrae stars, rotational variables, contact eclipsing binaries, detached eclipsing binaries, and non-variables). We achieve a balanced classification accuracy of 82 per cent on an independent test set of Kepler stars using a Gaussian mixture model classifier. We use our method to classify 12 000 Kepler light curves from Quarter 9 and provide a catalogue of the results. We further outline a confidence heuristic based on probability density to search our catalogue and extract candidate lists of correctly classified variable stars.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call