Abstract
The intelligent classification of heart-sound signals can assist clinicians in the rapid diagnosis of cardiovascular diseases. Mel-frequency cepstral coefficients (MelSpectrums) and log Mel-frequency cepstral coefficients (Log-MelSpectrums) based on a short-time Fourier transform (STFT) can represent the temporal and spectral structures of original heart-sound signals. Recently, various systems based on convolutional neural networks (CNNs) trained on the MelSpectrum and Log-MelSpectrum of segmental heart-sound frames that outperform systems using handcrafted features have been presented and classified heart-sound signals accurately. However, there is no a priori evidence of the best input representation for classifying heart sounds when using CNN models. Therefore, in this study, the MelSpectrum and Log-MelSpectrum features of heart-sound signals combined with a mathematical model of cardiac-sound acquisition were analysed theoretically. Both the experimental results and theoretical analysis demonstrated that the Log-MelSpectrum features can reduce the classification difference between domains and improve the performance of CNNs for heart-sound classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.