Abstract

This article presents a noninvasive method of classifying gait patterns associated with various movement disorders and/or neurological conditions, utilizing unobtrusive, instrumented socks and a deep-learning network. Seamless instrumented socks were fabricated using three accelerometer-embedded yarns, positioned at the toe (hallux), above the heel, and on the lateral malleolus. Human trials were conducted on 12 able-bodied participants, an instrumented sock was worn on each foot. Participants were asked to complete seven trials consisting of their typical gait and six different gait types that mimicked the typical movement patterns associated with various movement disorders and neurological conditions. Four neural networks and an SVM were tested to ascertain the most effective method of automatic data classification. The bi-long short-term memory (LSTM) generated the most accurate results and illustrates that the use of three accelerometers per foot increased classification accuracy compared to a single accelerometer per foot by 11.4%. When only a single accelerometer was utilized for classification, the ankle accelerometer generated the most accurate results in comparison to the other two. The network was able to correctly classify five different gait types: stomp (100%), shuffle (66.8%), diplegic (66.6%), hemiplegic (66.6%), and “normal walking” (58.0%). The network was incapable of correctly differentiating foot slap (21.2%) and steppage gait (4.8%). This work demonstrates that instrumented textile socks incorporating three accelerometer yarns were capable of generating sufficient data to allow a neural network to distinguish between specific gait patterns. This may enable clinicians and therapists to remotely classify gait alterations and observe changes in gait during rehabilitation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.