Abstract

AbstractFreshwater salinization of rivers is occurring across the globe because of nonpoint source loading of salts from anthropogenic activities such as agriculture, urbanization, and resource extraction that accelerate weathering and release salts. Multidecadal trends in river salinity are well characterized, yet our understanding of annual regimes of salinity in rivers draining diverse central and western U.S. landscapes and their associated catchment attributes is limited. We classified annual salinity regimes in 242 stream locations through dynamic time warping and fuzzy c‐medoids clustering of salinity time series. We found two dominant regimes in salinity characterized by an annual summer–fall peak or spring decline. Using random forest regression, we found that precipitation amount, stream slope, and soil salinity were the most important predictors of salinity regime classification. Advancing our understanding of salinity regimes in rivers will improve our ability to predict and mitigate the effects of salinization in freshwater ecosystems through management interventions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.