Abstract

BackgroundThe default mode network (DMN) in resting state has been increasingly used in disease diagnosis since it was found in 2001. Prior work has mainly focused on extracting a single DMN with various techniques. However, by using seeding-based analysis with more than one desirable seed, we can obtain multiple DMNs, which are likely to have complementary information, and thus are more promising for disease diagnosis. In the study, we used 18 early mild cognitive impairment (EMCI) participants and 18 late mild cognitive impairment (LMCI) participants of Alzheimer’s disease (AD). First, we used seeding-based analysis with four seeds to extract four DMNs for each subject. Then, we conducted fusion analysis for all different combinations of the four DMNs. Finally, we carried out nonlinear support vector machine classification based on the mixing coefficients from the fusion analysis.ResultsWe found that (1) the four DMNs corresponding to the four different seeds indeed capture different functional regions of each subject; (2) Maps of the four DMNs in the most different joint source from fusion analysis are centered at the regions of the corresponding seeds; (3) Classification results reveal the effectiveness of using multiple seeds to extract DMNs. When using a single seed, the regions of posterior cingulate cortex (PCC) extractions of EMCI and LMCI show the largest difference. For multiple-seed cases, the regions of PCC extraction and right lateral parietal cortex (RLP) extraction provide complementary information for each other in fusion, which improves the classification accuracy. Furthermore, the regions of left lateral parietal cortex (LLP) extraction and RLP extraction also have complementary effect in fusion. In summary, AD diagnosis can be improved by exploiting complementary information of DMNs extracted with multiple seeds.ConclusionsIn this study, we applied fusion analysis to the DMNs extracted by using different seeds for exploiting the complementary information hidden among the separately extracted DMNs, and the results supported our expectation that using the complementary information can improve classification accuracy.

Highlights

  • The default mode network (DMN) in resting state has been increasingly used in disease diagnosis since it was found in 2001

  • DMNs extracted by seeding-based analysis Figure 3 shows the source time series and extracted DMNs with the four seeds medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC), lateral parietal cortex (LLP) and right lateral parietal cortex (RLP) for subject 100_S_4556

  • The results show that the signals extracted by 4 different seeds are quite variant, and even for the same DMN, different seeds can capture different characteristics of DMN, which lays down the foundation of conducting fusion analysis to combine the complementary information of different DMNs

Read more

Summary

Introduction

The default mode network (DMN) in resting state has been increasingly used in disease diagnosis since it was found in 2001. By using seeding-based analysis with more than one desirable seed, we can obtain multiple DMNs, which are likely to have complementary information, and are more promising for disease diagnosis. The approaches to extract RSNs from resting state fMRI data mainly fall in two types: data-based [7, 8] and model-based [9, 10]. Both of the two types of approaches have their own merits and demerits.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call