Abstract

For robots operating in real-world environments, the ability to deal with dynamic entities such as humans, animals, vehicles, or other robots is of fundamental importance. The variability of dynamic objects, however, is large in general, which makes it hard to manually design suitable models for their appearance and dynamics. In this paper, we present an unsupervised learning approach to this model-building problem. We describe an exemplar-based model for representing the time-varying appearance of objects in planar laser scans as well as a clustering procedure that builds a set of object classes from given observation sequences. Extensive experiments in real environments demonstrate that our system is able to autonomously learn useful models for, e.g., pedestrians, skaters, or cyclists without being provided with external class information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.