Abstract

In this paper we classify convex compact ancient solutions to the affine curve shortening flow, namely, any convex compact ancient solution to the affine curve shortening flow must be a shrinking ellipse. The method combines a rescaling argument inspired by Wang (Ann. Math., 173(1):1185–1239, 2011), affine invariance of the equation, and monotonicity of the affine isoperimetric ratio. It also provides a new simple proof for the corresponding classification result to the higher-dimensional affine normal flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.