Abstract
Abstract We demonstrate that machine learning (ML) can skillfully classify thunderstorms into three categories: supercell, part of a quasi-linear convective system, or disorganized. These classifications are based on radar data and environmental information obtained through a proximity sounding. We compare the performance of five ML algorithms: logistic regression with the elastic-net penalty, random forests, gradient-boosted forests, and support-vector machines with both a linear and nonlinear kernel. The gradient-boosted forest performs best, with an accuracy of 0.77 ± 0.02 and a Peirce score of 0.58 ± 0.04. The linear support-vector machine performs second best, with values of 0.70 ± 0.02 and 0.55 ± 0.05, respectively. We use two interpretation methods, permutation importance and sequential forward selection, to determine the most important predictors for the ML models. We also use partial-dependence plots to determine how these predictors influence the outcome. A main conclusion is that shape predictors, based on the outline of the storm, appear to be highly important across ML models. The training data, a storm-centered radar scan and modeled proximity sounding, are similar to real-time data. Thus, the models could be used operationally to aid human decision-making by reducing the cognitive load involved in manual storm-mode identification. Also, they could be run on historical data to perform climatological analyses, which could be valuable to both the research and operational communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.