Abstract

Speckles and wrinkles are common skin conditions on the face, with occurrence ranging from mild to severe, affecting an individual in various ways. In this study, we aim to detect these conditions using an intelligent deep learning approach. First, we applied a face detection model and identified the face image using face positioning techniques. We then split the face into three polygonal areas (forehead, eyes, and cheeks) based on 81 position points. Skin conditions in the images were firstly judged by skin experts and subjectively classified into different categories, from good to bad. Wrinkles were classified into five categories, and speckles were classified into four categories. Next, data augmentation was performed using the following manipulations: changing the HSV hue, image rotation, and horizontal flipping of the original image, in order to facilitate deep learning using the Resnet models. We tested the training using these models each with a different number of layers: ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152. Finally, the K-fold (K = 10) cross-validation process was applied to obtain more rigorous results. Results of the classification are, in general, satisfactory. When compared across models and across skin features, we found that Resnet performance is generally better in terms of average classification accuracy when its architecture has more layers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call