Abstract

Abstract. This study examines the usefulness of easy to obtain EEG measures to discriminate learning-disabled children (LD) from healthy control children. Here the spectral power in the delta, theta, alpha, and beta EEG bands and various power ratios (theta/alpha, theta/beta, beta/alpha, beta/theta, beta/[alpha+theta], [delta+theta]/alpha, alpha/delta, and [theta+alpha]/beta) are applied. These measures were subjected to a factor analysis with varimax rotation revealing four factors explaining 90 % of the entire variance. Factor 1 represents the power of the slow EEG frequency bands delta and theta, factor 2 the relationship between fast and slow frequency bands, factor 3 the slow to fast ratios, and factor 4 the absolute power of nearly all frequency bands. Group differences were found for three factor scores (1, 3, and 4). The linear discriminant analysis with the four factor scores as dependent and the group allocation as independent variables revealed a correct classification of 86 %. Although this classification is far from being perfect it is nevertheless reasonable high and statistically significant. Thus, EEG measures like the one used in this study might support the diagnosis of this difficult to diagnose disability. In addition, the EEG measures identified provide a deeper insight into the neural underpinnings of this disability. Based on this knowledge it might be possible to design new therapeutic strategies to treat LD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call