Abstract

Predictive modeling strategies are increasingly studied as a means to overcome clinical bottlenecks in the diagnostic classification of autism spectrum disorder. However, while some findings are promising in the light of diagnostic marker research, many of these approaches lack the scalability for adequate and effective translation to everyday clinical practice. In this study, our aim was to explore the use of objective computer vision video analysis of real-world autism diagnostic interviews in a clinical sample of children and young individuals in the transition to adulthood to predict diagnosis. Specifically, we trained a support vector machine learning model on interpersonal synchrony data recorded in Autism Diagnostic Observation Schedule (ADOS-2) interviews of patient-clinician dyads. Our model was able to classify dyads involving an autistic patient (n = 56) with a balanced accuracy of 63.4% against dyads including a patient with other psychiatric diagnoses (n = 38). Further analyses revealed no significant associations between our classification metrics with clinical ratings. We argue that, given the above-chance performance of our classifier in a highly heterogeneous sample both in age and diagnosis, with few adjustments this highly scalable approach presents a viable route for future diagnostic marker research in autism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call