Abstract
Ensemble learning is a method to improve the performance of classification and prediction algorithms. Many studies have demonstrated that ensemble learning can decrease the generalization error and improve the performance of individual classifiers and predictors. However, its performance can be degraded due to multicollinearity problem where multiple classifiers of an ensemble are highly correlated with. This paper proposes a genetic algorithm-based coverage optimization technique in the purpose of resolving multicollinearity problem. Empirical results with bankruptcy prediction on Korea firms indicate that the proposed coverage optimization algorithm can help to design a diverse and highly accurate classification system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.