Abstract

Abstract. High density airborne point cloud data has become an important means for modelling and maintenance of a power line corridor. Since, the amount of data in a dense point cloud is huge even in a small area, an automatic detection of pylons in the corridor can be a prerequisite for efficient and effective extraction of wires in a subsequent step. However, the existing solutions mostly overlook this important requirement by processing the whole data into one go, which nonetheless will hinder their applications to large areas. This paper presents a new pylon detection technique from point cloud data. First, the input point cloud is divided into ground and nonground points. The non-ground points within a specific low height region are used to generate a pylon mask, where pylons are found stand-alone, not connected with any wires. The candidate pylons are obtained using a connected component analysis in the mask, followed by a removal of trees by comparing area, shape and symmetry properties of trees and pylons. Finally, the parallelism property of wires with the line connecting pair of candidate pylons is exploited to remove trees that have the same area and shape properties as pylons. Experimental results show that the proposed technique provides a high pylon detection rate in terms of completeness (100 %) and correctness (100 %).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.