Abstract

When it comes to AI and ML, precision in categorization is of the utmost importance. In this research, the use of supervised instance selection (SIS) to improve the performance of artificial neural networks (ANNs) in classification is investigated. The goal of SIS is to enhance the accuracy of future classification tasks by identifying and selecting a subset of examples from the original dataset. The purpose of this research is to provide light on how useful SIS is as a preprocessing tool for artificial neural network-based classification. The work aims to improve the input dataset to ANNs by using SIS, which may help with problems caused by noisy or redundant data. The ultimate goal is to improve ANNs' ability to identify data points properly across a wide range of application areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.