Abstract
This letter presents a classifier-constrained deep adversarial domain adaptation (CDADA) method for cross-domain semisupervised classification in remote sensing (RS) images. A deep convolutional neural network (DCNN) is used to build feature representations to describe the semantic content of scenes before the adaptation process. Then, adversarial domain adaptation is used to align the feature distribution of the source and the target. Specifically, two different land-cover classifiers are used as a discriminator to consider land-cover decision boundaries between classes and increase their distance to separate them from the original land-cover class boundaries. The generator then creates robust transferable features far from the original land-cover class boundaries under the classifier constraint. The experimental results of six scenarios built from three benchmark RS scene data sets (AID, Merced, and RSI-CB data sets) are reported and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.