Abstract

Classification of skull fracture is a challenging task for both radiologists and researchers. Skull fractures result in broken pieces of bone, which can cut into the brain and cause bleeding and other injury types. So it is vital to detect and classify the fracture very early. In real world, often fractures occur at multiple sites. This makes it harder to detect the fracture type where many fracture types might summarize a skull fracture. Unfortunately, manual detection of skull fracture and the classification process is time-consuming, threatening a patient's life. Because of the emergence of deep learning, this process could be automated. Convolutional Neural Networks (CNNs) are the most widely used deep learning models for image categorization because they deliver high accuracy and outstanding outcomes compared to other models. We propose a new model called SkullNetV1 comprising a novel CNN by taking advantage of CNN for feature extraction and lazy learning approach which acts as a classifier for classification of skull fractures from brain CT images to classify five fracture types. Our suggested model achieved a subset accuracy of 88%, an F1 score of 93%, the Area Under the Curve (AUC) of 0.89 to 0.98, a Hamming score of 92% and a Hamming loss of 0.04 for this seven-class multi-labeled classification.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.