Abstract

The $\Gamma$-colored $d$-complete posets correspond to certain Borel representations that are analogous to minuscule representations of semisimple Lie algebras. We classify $\Gamma$-colored $d$-complete posets which specifies the structure of the associated representations. We show that finite $\Gamma$-colored $d$-complete posets are precisely the dominant minuscule heaps of J.R. Stembridge. These heaps are reformulations and extensions of the colored $d$-complete posets of R.A. Proctor. We also show that connected infinite $\Gamma$-colored $d$-complete posets are precisely order filters of the connected full heaps of R.M. Green.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.