Abstract
In many real-world domains, learning from imbalanced data sets is always confronted. Since the skewed class distribution brings the challenge for traditional classifiers because of much lower classification accuracy on rare classes, we propose the novel method on classification with local clustering based on the data distribution of the imbalanced data sets to solve this problem. At first, we divide the whole data set into several data groups based on the data distribution. Then we perform local clustering within each group both on the normal class and the disjointed rare class. For rare class, the subsequent over-sampling is employed according to the different rates. At last, we apply support vector machines (SVMS) for classification, by means of the traditional tactic of the cost matrix to enhance the classification accuracies. The experimental results on several UCI data sets show that this method can produces much higher prediction accuracies on the rare class than state-of-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.