Abstract

The authors present a sparsity‐based algorithm, basic thresholding classifier (BTC), for classification applications which is capable of identifying test samples extremely rapidly and performing high classification accuracy. They introduce a sufficient identification condition (SIC) under which BTC can identify any test sample in the range space of a given dictionary. By using SIC, they develop a procedure which provides a guidance for the selection of threshold parameter. By exploiting rapid classification capability, they propose a fusion scheme in which individual BTC classifiers are combined to produce better classification results especially when very small number of features is used. Finally, they propose an efficient validation technique to reject invalid test samples. Numerical results in face identification domain show that BTC is a tempting alternative to sparsity‐based classification algorithms such as greedy orthogonal matching pursuit and l1‐minimisation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.