Abstract
Hyperdimensional (HD) computing is built upon its unique data type referred to as hypervectors. The dimension of these hypervectors is typically in the range of tens of thousands. Proposed to solve cognitive tasks, HD computing aims at calculating similarity among its data. Data transformation is realized by three operations, including addition, multiplication and permutation. Its ultra-wide data representation introduces redundancy against noise. Since information is evenly distributed over every bit of the hypervectors, HD computing is inherently robust. Additionally, due to the nature of those three operations, HD computing leads to fast learning ability, high energy efficiency and acceptable accuracy in learning and classification tasks. This paper introduces the background of HD computing, and reviews the data representation, data transformation, and similarity measurement. The orthogonality in high dimensions presents opportunities for flexible computing. To balance the tradeoff between accuracy and efficiency, strategies include but are not limited to encoding, retraining, binarization and hardware acceleration. Evaluations indicate that HD computing shows great potential in addressing problems using data in the form of letters, signals and images. HD computing especially shows significant promise to replace machine learning algorithms as a light-weight classifier in the field of internet of things (IoTs).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.