Abstract

The ideal use of small multilayer nets at the decision nodes of a binary classification tree to extract nonlinear features is proposed. The nets are trained and the tree is grown using a gradient-type learning algorithm in the multiclass case. The method improves on standard classification tree design methods in that it generally produces trees with lower error rates and fewer nodes. It also reduces the problems associated with training large unstructured nets and transfers the problem of selecting the size of the net to the simpler problem of finding a tree of the right size. An efficient tree pruning algorithm is proposed for this purpose. Trees constructed with the method and the CART method are compared on a waveform recognition problem and a handwritten character recognition problem. The approach demonstrates significant decrease in error rate and tree size. It also yields comparable error rates and shorter training times than a large multilayer net trained with backpropagation on the same problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.