Abstract

The group of local unitary transformations acts on the space of n-qubit pure states, decomposing it into orbits. In a previous paper we proved that a product of singlet states (together with an unentangled qubit for a system with an odd number of qubits) achieves the smallest possible orbit dimension, equal to 3n/2 for n even and (3n + 1)/2 for n odd, where n is the number of qubits. In this paper we show that any state with minimum orbit dimension must be of this form, and furthermore, such states are classified up to local unitary equivalence by the sets of pairs of qubits entangled in singlets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.